Indigenous Learners in North America
Jump to navigation
Jump to search
Lee and Kizilcec (2020) [pdf]
- Models predicting college success (or median grade or above)
- Random forest algorithms performed significantly worse for underrepresented minority students (URM; American Indian, Black, Hawaiian or Pacific Islander, Hispanic, and Multicultural) than non-URM students (White and Asian)
- The fairness of the model, namely demographic parity and equality of opportunity, as well as its accuracy, improved after correcting the threshold values
Christie et al. (2019) pdf
- Models predicting student's high school dropout
- The decision trees showed little difference in AUC among White, Black, Hispanic, Asian, American Indian and Alaska Native, and Native Hawaiian and Pacific Islander.
- The decision trees showed very minor differences in AUC between female and male students