Difference between revisions of "Indigenous Learners in North America"

From Penn Center for Learning Analytics Wiki
Jump to navigation Jump to search
Line 1: Line 1:
Lee and Kizilcec (2020) [[https://arxiv.org/pdf/2007.00088.pdf pdf]]
Lee and Kizilcec (2020) [https://arxiv.org/pdf/2007.00088.pdf pdf]
*Models predicting college success (or median grade or above)
*Models predicting college success (or median grade or above)
*Random forest algorithms performed significantly worse for underrepresented minority students (URM; American Indian, Black, Hawaiian or Pacific Islander, Hispanic, and Multicultural) than non-URM students (White and Asian)
*Random forest algorithms performed significantly worse for underrepresented minority students (URM; American Indian, Black, Hawaiian or Pacific Islander, Hispanic, and Multicultural) than non-URM students (White and Asian)
*The fairness of the model, namely demographic parity and equality of opportunity, as well as its accuracy, improved after correcting the threshold values
*The fairness of the model, namely demographic parity and equality of opportunity, as well as its accuracy, improved after correcting the threshold values from 0.5 to group-specific values





Revision as of 06:44, 18 May 2022

Lee and Kizilcec (2020) pdf

  • Models predicting college success (or median grade or above)
  • Random forest algorithms performed significantly worse for underrepresented minority students (URM; American Indian, Black, Hawaiian or Pacific Islander, Hispanic, and Multicultural) than non-URM students (White and Asian)
  • The fairness of the model, namely demographic parity and equality of opportunity, as well as its accuracy, improved after correcting the threshold values from 0.5 to group-specific values


Christie et al. (2019) pdf

  • Models predicting student's high school dropout
  • The decision trees showed little difference in AUC among White, Black, Hispanic, Asian, American Indian and Alaska Native, and Native Hawaiian and Pacific Islander.
  • The decision trees showed very minor differences in AUC between female and male students