Other NLP Applications of Algorithms in Education

From Penn Center for Learning Analytics Wiki
Revision as of 11:22, 4 July 2022 by Ryan (talk | contribs) (Added Sha et al (2021))
Jump to navigation Jump to search

Naismith et al. (2018) pdf

  • a model that measures L2 learners’ lexical sophistication with the frequency list based on the native speaker corpora
  • Arabic-speaking learners are rated systematically lower across all levels of English proficiency than speakers of Chinese, Japanese, Korean, and Spanish.
  • Level 5 Arabic-speaking learners are unfairly evaluated to have similar level of lexical sophistication as Level 4 learners from China, Japan, Korean and Spain .
  • When used on ETS corpus, “high”-labeled essays by Japanese-speaking learners are rated significantly lower in lexical sophistication than Arabic, Japanese, Korean and Spanish peers.


Samei et al. (2015) pdf

  • Models predicting classroom discourse properties (e.g. authenticity and uptake)
  • Model trained on urban students (authenticity: 0.62, uptake: 0.60) performed with similar accuracy when tested on non-urban students (authenticity: 0.62, uptake: 0.62)
  • Model trained on non-urban (authenticity: 0.61, uptake: 0.59) performed with similar accuracy when tested on urban students (authenticity: 0.60, uptake: 0.63)


Sha et al. (2021) pdf

  • Models predicting a MOOC discussion forum post is content-relevant or content-irrelevant
  • MOOCs taught in English
  • Some algorithms achieved ABROCA under 0.01 for female students versus male students,

but other algorithms (Naive Bayes) had ABROCA as high as 0.06

  • ABROCA varied from 0.03 to 0.08 for non-native speakers of English versus native speakers
  • Balancing the size of each group in the training set reduced ABROCA values