Black/African-American Learners in North America
Jump to navigation
Jump to search
Kai et al. (2017) pdf
- Models predicting student retention in an online college program
- J48 decision trees achieved much lower Kappa and AUC for Black students than White students
- JRip decision rules achieved almost identical Kappa and AUC for Black students and White students
Hu and Rangwala (2020) pdf
- Models predicting if a college student will fail in a course
- Multiple cooperative classifier model (MCCM) model was the best at reducing bias, or discrimination against African-American students, while other models (particularly Logistic Regression and Rawlsian Fairness) performed far worse
- The level of bias was inconsistent across courses, with MCCM prediction showing the least bias for Psychology and the greatest bias for Computer Science
Anderson et al. (2019) pdf
- Models predicting six-year college graduation
- Performance for African-American students comparable to performance for students in other races.
Christie et al. (2019)
Ramineni & Williamson (2018) [pdf]
- Revised automated scoring engine for assessing GSE essay
- Relative weakness in content and organization by African American test takers resulted in lower scores than Chinese peers who wrote longer.