Gender: Male/Female
Jump to navigation
Jump to search
Kai et al. (2017) pdf
- Models predicting student retention in an online college program
- performance was very good for both groups
- JRip decision tree model performed more equitably than a J48 decision tree model for both male and female students.
- JRip model had moderately better performance for female students than male students
Hu and Rangwala (2020) pdf
- Models predicting if student at-risk for failing a course
- Performed worse for male students, but that this result is inconsistent across university courses
Anderson et al. (2019) pdf
- Models predicting six-year college graduation
- Algorithms had higher false negative rates for male students
Gardner, Brooks and Baker (2019) [pdf]
- Model predicting MOOC dropout
- Some algorithms studied performed worse for female students than male students, particularly in courses with 45% or less male presence
Riazy et al. (2020) [pdf]
- Model predicting course outcome
- Fairly marginal differences were found for prediction quality and in overall proportion of predicted pass between groups
- Inconsistent in direction between algorithms.
Lee and Kizilcec (2020) [pdf]
- Model predicting college course grade of median or above
- Unmodified algorithm, before correction, performed worse for male students than for female students
Yu et al. (2020) [pdf]
- Model predicting undergraduate course grades and average GPA
- female
students were generally inaccurately predicted to perform better than male students
Yu and colleagues (2021) [pdf]
- Model predicting college dropout
- Worse true negative rates for male students, but somewhat better recall for male students taking courses in-person