Gender: Male/Female

From Penn Center for Learning Analytics Wiki
Revision as of 09:12, 18 May 2022 by Seiyon (talk | contribs)
Jump to navigation Jump to search

Kai et al. (2017) pdf

  • Models predicting student retention in an online college program
  • J48 decision trees achieved significantly lower Kappa but higher AUC for male students than female students
  • JRip decision rules achieved much lower Kappa and AUC for male students than female students


Christie et al. (2019) pdf

  • Models predicting student's high school dropout
  • The decision trees showed very minor differences in AUC between female and male students


Hu and Rangwala (2020) pdf

  • Models predicting if a college student will fail in a course
  • Multiple cooperative classifier model (MCCM) model was the best at reducing bias, or discrimination against male students, performing particularly better for Psychology course.
  • Other models (Logistic Regression and Rawlsian Fairness) performed far worse for male students, performing particularly worse in Computer Science and Electrical Engineering.


Anderson et al. (2019) pdf

  • Models predicting six-year college graduation
  • False negatives rates were greater for male students than female students when SVM, Logistic Regression, and SGD were used


Gardner, Brooks and Baker (2019) pdf

  • Model predicting MOOC dropout, specifically through slicing analysis
  • Some algorithms studied performed worse for female students than male students, particularly in courses with 45% or less male presence


Riazy et al. (2020) pdf

  • Model predicting course outcome
  • Marginal differences were found for prediction quality and in overall proportion of predicted pass between groups
  • Inconsistent in direction between algorithms.


Lee and Kizilcec (2020) pdf

  • Models predicting college success (or median grade or above)
  • Random forest algorithms performed significantly worse for male students than female students
  • The fairness of the model, namely demographic parity and equality of opportunity, as well as its accuracy, improved after correcting the threshold values from 0.5 to group-specific values


Yu et al. (2020) pdf

  • Model predicting undergraduate short-term (course grades) and long-term (average GPA) success
  • Female students were inaccurately predicted to achieve greater short-term and long-term success than male students.
  • The fairness of models improved when a combination of institutional and click data was used in the model


Yu and colleagues (2021) pdf

  • Models predicting college dropout for students in residential and fully online program
  • Whether the socio-demographic information was included or not, the model showed worse true negative rates for male students, and worse accuracy if they are studying online
  • The model showed better recall for male students, especially for those studying in person
  • The difference in recall and true negative rates were lower, and thus fairer, for male students studying online if their socio-demographic information was not included in the model


Riazy et al. (2020) pdf

  • Models predicting course outcome of students in a virtual learning environment (VLE)
  • More male students were predicted to pass the course than female students, but this overestimation was fairly small and not consistent across different algorithms
  • Among the algorithms, Naive Bayes had the lowest normalized mutual information value and the highest ABROCA value


Bridgeman et al. (2009) pdf

  • Automated scoring models for evaluating English essays, or e-rater
  • E-rater performed accurately for male and female students when assessing 11th grade English essays and independent writing task in Test of English as a Foreign Language
  • While feature-level score differences were identified across gender and ethnic groups (e.g. e-rater gave better scores for word length and vocabulary level but less on grammar and mechanics when grading 11th grade essays written by Asian American female students), the authors called for larger samples to confirm the findings


Bridgeman, Trapani, and Attali (2012) pdf

  • A later version of automated scoring models for evaluating English essays, or e-rater
  • The score difference between human rater and e-rater was marginal when written responses to GRE issue prompt by male and female test-takers were compared
  • The difference in score was significantly greater when assessing written responses to GRE argument prompt, as e-rater gave lower score for male test-takers, particularly for African American, American Indian, and Hispanic males, when assessing written responses to GRE argument prompt