Difference between revisions of "Course Grade and GPA Prediction"

From Penn Center for Learning Analytics Wiki
Jump to navigation Jump to search
Line 2: Line 2:
* Model predicting college course grade of median or above
* Model predicting college course grade of median or above
* Out-of-the-box random forest model violates demographic parity and equality of opportunity for URM (underrepresented minority: American Indian, Black, Hawaiian or Pacific Islander, Hispanic, and Multicultural) than for non-URM students (White and Asian)
* Out-of-the-box random forest model violates demographic parity and equality of opportunity for URM (underrepresented minority: American Indian, Black, Hawaiian or Pacific Islander, Hispanic, and Multicultural) than for non-URM students (White and Asian)


Yu et al. (2020) [[https://files.eric.ed.gov/fulltext/ED608066.pdf pdf]]
Yu et al. (2020) [[https://files.eric.ed.gov/fulltext/ED608066.pdf pdf]]


* Model predicting undergraduate course grades and average GPA
* Model predicting undergraduate course grades and average GPA


Riazy et al. (2020) [[https://www.scitepress.org/Papers/2020/93241/93241.pdf pdf]]
Riazy et al. (2020) [[https://www.scitepress.org/Papers/2020/93241/93241.pdf pdf]]

Revision as of 02:02, 24 January 2022

Lee and Kizilcec (2020) [pdf]

  • Model predicting college course grade of median or above
  • Out-of-the-box random forest model violates demographic parity and equality of opportunity for URM (underrepresented minority: American Indian, Black, Hawaiian or Pacific Islander, Hispanic, and Multicultural) than for non-URM students (White and Asian)

Yu et al. (2020) [pdf]

  • Model predicting undergraduate course grades and average GPA

Riazy et al. (2020) [pdf]

  • Model predicting course outcome
  • Fairly marginal differences were found for prediction quality and in overall proportion of predicted pass between groups
  • Inconsistent in direction between algorithms.