Difference between revisions of "Gender: Male/Female"

From Penn Center for Learning Analytics Wiki
Jump to navigation Jump to search
Line 6: Line 6:


Hu and Rangwala (2020) [https://files.eric.ed.gov/fulltext/ED608050.pdf pdf]
Hu and Rangwala (2020) [https://files.eric.ed.gov/fulltext/ED608050.pdf pdf]
* Models predicting if college student at-risk for failing a course
* Models predicting if a college student will fail in a course
* Performed worse for male students, but the degree differed across courses
* Multiple cooperative classifier model (MCCM) model was the best at reducing bias, or discrimination against male students, performing particularly better for Psychology course.
* Other models (Logistic Regression and Rawlsian Fairness) performed far worse for male students, performing particularly worse in Computer Science and Electrical Engineering.
 


Anderson et al. (2019) [https://www.upenn.edu/learninganalytics/ryanbaker/EDM2019_paper56.pdf pdf]
Anderson et al. (2019) [https://www.upenn.edu/learninganalytics/ryanbaker/EDM2019_paper56.pdf pdf]

Revision as of 17:35, 22 March 2022

Kai et al. (2017) pdf

  • Models predicting student retention in an online college program
  • J48 decision trees achieved significantly lower Kappa but higher AUC for male students than female students
  • JRip decision rules achieved much lower Kappa and AUC for male students than female students


Hu and Rangwala (2020) pdf

  • Models predicting if a college student will fail in a course
  • Multiple cooperative classifier model (MCCM) model was the best at reducing bias, or discrimination against male students, performing particularly better for Psychology course.
  • Other models (Logistic Regression and Rawlsian Fairness) performed far worse for male students, performing particularly worse in Computer Science and Electrical Engineering.


Anderson et al. (2019) pdf

  • Models predicting six-year college graduation
  • Algorithms had higher false negative rates for male students

Gardner, Brooks and Baker (2019) [pdf]

  • Model predicting MOOC dropout, specifically through slicing analysis
  • Some algorithms studied performed worse for female students than male students, particularly in courses with 45% or less male presence

Riazy et al. (2020) [pdf]

  • Model predicting course outcome
  • Fairly marginal differences were found for prediction quality and in overall proportion of predicted pass between groups
  • Inconsistent in direction between algorithms.

Lee and Kizilcec (2020) [pdf]

  • Model predicting college course grade of median or above
  • Unmodified algorithm, before correction, performed worse for male students than for female students

Yu et al. (2020) [pdf]

  • Model predicting undergraduate course grades and average GPA
  • female students were generally inaccurately predicted to perform better than male students

Yu and colleagues (2021) [pdf]

  • Model predicting college dropout
  • Worse true negative rates for male students, but somewhat better recall for male students taking courses in-person