Difference between revisions of "Socioeconomic Status"

From Penn Center for Learning Analytics Wiki
Jump to navigation Jump to search
(Rewrote Queiroga)
 
(3 intermediate revisions by the same user not shown)
Line 39: Line 39:
* Model was unable to make prediction of student success (F1 score = 0.0) for students not in a social welfare program (higher socioeconomic status)
* Model was unable to make prediction of student success (F1 score = 0.0) for students not in a social welfare program (higher socioeconomic status)
* Model had slightly lower AUC ROC (0.52 instead of 0.56) for students not in a social welfare program (higher socioeconomic status)
* Model had slightly lower AUC ROC (0.52 instead of 0.56) for students not in a social welfare program (higher socioeconomic status)
Permodo et al. (2023) [https://www.researchgate.net/publication/370001437_Difficult_Lessons_on_Social_Prediction_from_Wisconsin_Public_Schools pdf]
* Paper discusses system that predicts probabilities of on-time graduation
* Prediction is more accurate for low-income students than non-low-income students
Cock et al.(2023) [[https://dl.acm.org/doi/abs/10.1145/3576050.3576149?casa_token=6Fjh-EUzN-gAAAAA%3AtpRMYzSAVoQFYNzwY5gwSsrnzHIlI0tUjMq6okwgdcCUmuBMVZEtn8eLO52dCtIYUbrHBV_Il9Sx pdf]]
* Paper investigates biases in models designed to early identify middle school students at risk of failing in flipped-classroom course and open-ended exploration environment (TugLet)
* Model performs worse for students from school with higher socio-economic status in open-ended environment (FNR=0.73 for higher SES and FNR=0.57 for medium SES).

Latest revision as of 23:14, 27 November 2023

Yudelson et al. (2014) pdf

  • Models discovering generalizable sub-populations of students across different schools to predict students' learning with Carnegie Learning’s Cognitive Tutor (CLCT)
  • Models trained on schools with a high proportion of low-SES student performed worse than those trained with medium or low proportion
  • Models trained on schools with low, medium proportion of SES students performed similarly well for schools with high proportions of low-SES students


Yu et al. (2020) pdf

  • Models predicting undergraduate course grades and average GPA
  • Students from low-income households were inaccurately predicted to perform worse for both short-term (final course grade) and long-term (GPA)
  • Fairness of model improved if it included only clickstream and survey data


Yu et al. (2021) pdf

  • Models predicting college dropout for students in residential and fully online program
  • Whether the socio-demographic information was included or not, the model showed worse accuracy and true negative rates for residential students with greater financial needs
  • The model showed better recall for students with greater financial needs, especially for those studying in person


Kung & Yu (2020) pdf

  • Predicting course grades and later GPA at public U.S. university
  • Equal performance for low-income and upper-income students in course grade prediction for several algorithms and metrics
  • Worse performance on independence for low-income students than high-income students in later GPA prediction for four of five algorithms; one algorithm had worse separation and two algorithms had worse sufficiency


Litman et al. (2021) html

  • Automated essay scoring models inferring text evidence usage
  • All algorithms studied have less than 1% of error explained by whether student receives free/reduced price lunch


Queiroga et al. (2022) pdf

  • Models predicting secondary school students at risk of failure or dropping out
  • Model was unable to make prediction of student success (F1 score = 0.0) for students not in a social welfare program (higher socioeconomic status)
  • Model had slightly lower AUC ROC (0.52 instead of 0.56) for students not in a social welfare program (higher socioeconomic status)


Permodo et al. (2023) pdf

  • Paper discusses system that predicts probabilities of on-time graduation
  • Prediction is more accurate for low-income students than non-low-income students


Cock et al.(2023) [pdf]

  • Paper investigates biases in models designed to early identify middle school students at risk of failing in flipped-classroom course and open-ended exploration environment (TugLet)
  • Model performs worse for students from school with higher socio-economic status in open-ended environment (FNR=0.73 for higher SES and FNR=0.57 for medium SES).