Difference between revisions of "Learners with Disabilities"

From Penn Center for Learning Analytics Wiki
Jump to navigation Jump to search
(Correction to description of Riazy et al article)
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
  Loukina & Buzick (2017) [https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ets2.12170 pdf]
 Loukina & Buzick (2017) [https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ets2.12170 pdf]
 
* a model (the SpeechRater) automatically scoring open-ended spoken responses for speakers with documented or suspected speech impairments
* a model (the SpeechRater) automatically scoring open-ended spoken responses for speakers with documented or suspected speech impairments
* SpeechRater was less accurate for test takers who were deferred for signs of speech impairment (ρ<sup>2</sup> = .57) than test takers who were given accommodations for documented disabilities (ρ<sup>2</sup> = .73)
* SpeechRater was less accurate for test takers who were deferred for signs of speech impairment (ρ<sup>2</sup> = .57) than test takers who were given accommodations for documented disabilities (ρ<sup>2</sup> = .73)
Line 9: Line 8:
* Models predicting course outcome of students in a virtual learning environment (VLE)
* Models predicting course outcome of students in a virtual learning environment (VLE)
* Disparate impact was found for students with self-declared disabilities, with systematic inaccuracies in predictions for learners in this group.
* Disparate impact was found for students with self-declared disabilities, with systematic inaccuracies in predictions for learners in this group.
Permodo et al (2023) [https://www.researchgate.net/publication/370001437_Difficult_Lessons_on_Social_Prediction_from_Wisconsin_Public_Schools pdf]
* Paper discusses system that predicts probabilities of on-time graduation
* Prediction is more accurate for students with Disabilities than students without Disabilities

Latest revision as of 20:13, 28 June 2023

 Loukina & Buzick (2017) pdf

  • a model (the SpeechRater) automatically scoring open-ended spoken responses for speakers with documented or suspected speech impairments
  • SpeechRater was less accurate for test takers who were deferred for signs of speech impairment (ρ2 = .57) than test takers who were given accommodations for documented disabilities (ρ2 = .73)


Riazy et al. (2020) pdf

  • Models predicting course outcome of students in a virtual learning environment (VLE)
  • Disparate impact was found for students with self-declared disabilities, with systematic inaccuracies in predictions for learners in this group.


Permodo et al (2023) pdf

  • Paper discusses system that predicts probabilities of on-time graduation
  • Prediction is more accurate for students with Disabilities than students without Disabilities