Difference between revisions of "Learners with Disabilities"

From Penn Center for Learning Analytics Wiki
Jump to navigation Jump to search
(Correction to description of Riazy et al article)
Line 8: Line 8:


* Models predicting course outcome of students in a virtual learning environment (VLE)
* Models predicting course outcome of students in a virtual learning environment (VLE)
* Students with self-declared disability were predicted to pass the course with 16-23 percentage points in favor from the training and test set
* Disparate impact was found for students with self-declared disabilities, with systematic inaccuracies in predictions for learners in this group.

Revision as of 05:07, 10 November 2022

  Loukina & Buzick (2017) pdf

  • a model (the SpeechRater) automatically scoring open-ended spoken responses for speakers with documented or suspected speech impairments
  • SpeechRater was less accurate for test takers who were deferred for signs of speech impairment (ρ2 = .57) than test takers who were given accommodations for documented disabilities (ρ2 = .73)


Riazy et al. (2020) pdf

  • Models predicting course outcome of students in a virtual learning environment (VLE)
  • Disparate impact was found for students with self-declared disabilities, with systematic inaccuracies in predictions for learners in this group.